SEPIC耦合電感回路電流
有趣的是,極少的廠商已經(jīng)認識到了這一事實,并且許多廠商已經(jīng)針對SEPIC 應用生產(chǎn)出了低漏電感的電感。另一方面,Coilcraft 擁有約0.5 uH 漏電感的47 uH MSD1260,同時還于最新開發(fā)出了這種設計的其他版本,其具有10 uH 以上的漏電感
前面,我們討論了耦合電容器AC 電壓被施加于耦合電感漏電感的情況。漏電感電壓會在電源中引起較大的回路電流。在第2 部分中,我們將介紹利用松散耦合電感和緊密耦合電感所構(gòu)建電源的一些測量結(jié)果。
我們構(gòu)建起如圖1 所示電路,并對其進行描述。該電路可在汽車市場獲得應用。這里,其擁有一個8V 到36V 的寬范圍輸入,可以為穩(wěn)定12-V 輸出以上或者以下。汽車市場更喜歡使用陶瓷電容器,原因是其寬溫度范圍、長壽命、高紋波電流額定值和高可靠性。結(jié)果,耦合電容器(C6) 便為陶瓷的。這就意味著,相比電解電容器,它擁有較高的AC 電壓,同時這種電路會對低漏電感值更加敏感。

圖1 SEPIC 轉(zhuǎn)換器可利用一個單開關降壓或者升壓
該電路中的兩個47 uH Coilcraft 電感分別為:一個非常低漏電感(0.5 uH) 的MSD1260,以及一個較高漏電感(14 uH) 的MSC1278。圖2 顯示了這兩個電感的一次電流波形。左邊為MSC1278 電感的輸入電流(流入L1 的引腳1),而右邊為MSD1260 輸入電流波形。左邊的電流為一般情況。電流主要為其三角AC 分量的DC。右邊的波形為利用耦合電感的高AC 電壓以及一個低漏電感值所得到的結(jié)果。峰值電流幾乎為DC 輸入電流的兩倍,而RMS 電流比高漏電感情況多出50%。


(a)松散耦合 (b)緊密耦合
圖2 低漏電感(右邊)帶來嚴重的耦合電感回路電流
很明顯,利用緊密耦合電感對這種電源進行電磁干擾(EMI) 濾波會存在更多的問題。這兩種設計之間的AC 輸入電流比約為5:1,也就是說還需要14 dB 的衰減。這種高回路電流產(chǎn)生的第二個影響是對轉(zhuǎn)換器效率的影響。由于電源中多出了50% 的RMS電流,傳導損耗將會增加一倍以上。圖3將這兩種電感的效率進行了比較(電路其它部分保持不變)。12V 到12V 轉(zhuǎn)換時,兩種結(jié)果都很不錯——都在90%左右。但是,松散耦合電感在負載范圍得到的效率高出1 到2 個百分點,而它的DC 電阻與緊密耦合電感是一樣的。

圖3 由于更少的電流,高漏電感(MSC1278) 產(chǎn)生更高的效率
總之,SEPIC 轉(zhuǎn)換器中的耦合電感可以縮小電源的體積,降低電源的成本。電感并不需要緊密耦合。實際上,緊密耦合會增加電源內(nèi)的電流,從而使輸入濾波復雜化并降低效率。選擇合適漏電感值的最簡單方法是利用模擬。但是,您也可以先估算出耦合電容器的電壓,然后設置允許紋波電流,最后計算得到最小漏電感。
基爾霍夫電流相關文章:基爾霍夫電流定律
評論